Paper ID: 2409.13931
On-device Collaborative Language Modeling via a Mixture of Generalists and Specialists
Dongyang Fan, Bettina Messmer, Martin Jaggi
We target on-device collaborative fine-tuning of Large Language Models (LLMs) by adapting a Mixture of Experts (MoE) architecture, where experts are Low-Rank Adaptation (LoRA) modules. In conventional MoE approaches, experts develop into specialists throughout training. In contrast, we propose a novel $\textbf{Co}$llaborative learning approach via a $\textbf{Mi}$xture of $\textbf{G}$eneralists and $\textbf{S}$pecialists (CoMiGS). Diversifying into the two roles is achieved by aggregating certain experts globally while keeping others localized to specialize in user-specific datasets. Central to our work is a learnable routing network that routes at a token level, balancing collaboration and personalization at the finest granularity. Our method consistently demonstrates superior performance in scenarios with high data heterogeneity across various datasets. By design, our approach accommodates varying computational resource constraints among users as shown in different numbers of LoRA experts. We further showcase that low-resourced users can benefit from high-resourced users with high data quantity.
Submitted: Sep 20, 2024