Paper ID: 2409.13976
Detecting Inpainted Video with Frequency Domain Insights
Quanhui Tang, Jingtao Cao
Video inpainting enables seamless content removal and replacement within frames, posing ethical and legal risks when misused. To mitigate these risks, detecting manipulated regions in inpainted videos is critical. Previous detection methods often focus solely on the characteristics derived from spatial and temporal dimensions, which limits their effectiveness by overlooking the unique frequency characteristics of different inpainting algorithms. In this paper, we propose the Frequency Domain Insights Network (FDIN), which significantly enhances detection accuracy by incorporating insights from the frequency domain. Our network features an Adaptive Band Selective Response module to discern frequency characteristics specific to various inpainting techniques and a Fast Fourier Convolution-based Attention module for identifying periodic artifacts in inpainted regions. Utilizing 3D ResBlocks for spatiotemporal analysis, FDIN progressively refines detection precision from broad assessments to detailed localization. Experimental evaluations on public datasets demonstrate that FDIN achieves state-of-the-art performance, setting a new benchmark in video inpainting detection.
Submitted: Sep 21, 2024