Paper ID: 2409.14378

Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers

Dominic Schneider, Lutz Rapp

Optical fiber amplifiers are key elements in present optical networks. Failures of these components result in high financial loss of income of the network operator as the communication traffic over an affected link is interrupted. Applying Remaining useful lifetime (RUL) prediction in the context of Predictive Maintenance (PdM) to optical fiber amplifiers to predict upcoming system failures at an early stage, so that network outages can be minimized through planning of targeted maintenance actions, ensures reliability and safety. Optical fiber amplifier are complex systems, that work under various operating conditions, which makes correct forecasting a difficult task. Increased monitoring capabilities of systems results in datasets that facilitate the application of data-driven RUL prediction methods. Deep learning models in particular have shown good performance, but generalization based on comparatively small datasets for RUL prediction is difficult. In this paper, we propose Sparse Low-ranked self-Attention Transformer (SLAT) as a novel RUL prediction method. SLAT is based on an encoder-decoder architecture, wherein two parallel working encoders extract features for sensors and time steps. By utilizing the self-attention mechanism, long-term dependencies can be learned from long sequences. The implementation of sparsity in the attention matrix and a low-rank parametrization reduce overfitting and increase generalization. Experimental application to optical fiber amplifiers exemplified on EDFA, as well as a reference dataset from turbofan engines, shows that SLAT outperforms the state-of-the-art methods.

Submitted: Sep 22, 2024