Paper ID: 2409.14645
Demystifying Trajectory Recovery From Ash: An Open-Source Evaluation and Enhancement
Nicholas D'Silva, Toran Shahi, Øyvind Timian Dokk Husveg, Adith Sanjeeve, Erik Buchholz, Salil S. Kanhere
Once analysed, location trajectories can provide valuable insights beneficial to various applications. However, such data is also highly sensitive, rendering them susceptible to privacy risks in the event of mismanagement, for example, revealing an individual's identity, home address, or political affiliations. Hence, ensuring that privacy is preserved for this data is a priority. One commonly taken measure to mitigate this concern is aggregation. Previous work by Xu et al. shows that trajectories are still recoverable from anonymised and aggregated datasets. However, the study lacks implementation details, obfuscating the mechanisms of the attack. Additionally, the attack was evaluated on commercial non-public datasets, rendering the results and subsequent claims unverifiable. This study reimplements the trajectory recovery attack from scratch and evaluates it on two open-source datasets, detailing the preprocessing steps and implementation. Results confirm that privacy leakage still exists despite common anonymisation and aggregation methods but also indicate that the initial accuracy claims may have been overly ambitious. We release all code as open-source to ensure the results are entirely reproducible and, therefore, verifiable. Moreover, we propose a stronger attack by designing a series of enhancements to the baseline attack. These enhancements yield higher accuracies by up to 16%, providing an improved benchmark for future research in trajectory recovery methods. Our improvements also enable online execution of the attack, allowing partial attacks on larger datasets previously considered unprocessable, thereby furthering the extent of privacy leakage. The findings emphasise the importance of using strong privacy-preserving mechanisms when releasing aggregated mobility data and not solely relying on aggregation as a means of anonymisation.
Submitted: Sep 23, 2024