Paper ID: 2409.14679
Quantifying Context Bias in Domain Adaptation for Object Detection
Hojun Son, Arpan Kusari
Domain adaptation for object detection (DAOD) aims to transfer a trained model from a source to a target domain. Various DAOD methods exist, some of which minimize context bias between foreground-background associations in various domains. However, no prior work has studied context bias in DAOD by analyzing changes in background features during adaptation and how context bias is represented in different domains. Our research experiment highlights the potential usability of context bias in DAOD. We address the problem by varying activation values over different layers of trained models and by masking the background, both of which impact the number and quality of detections. We then use one synthetic dataset from CARLA and two different versions of real open-source data, Cityscapes and Cityscapes foggy, as separate domains to represent and quantify context bias. We utilize different metrics such as Maximum Mean Discrepancy (MMD) and Maximum Variance Discrepancy (MVD) to find the layer-specific conditional probability estimates of foreground given manipulated background regions for separate domains. We demonstrate through detailed analysis that understanding of the context bias can affect DAOD approach and foc
Submitted: Sep 23, 2024