Paper ID: 2409.14896

Built Different: Tactile Perception to Overcome Cross-Embodiment Capability Differences in Collaborative Manipulation

William van den Bogert, Madhavan Iyengar, Nima Fazeli

Tactile sensing is a powerful means of implicit communication between a human and a robot assistant. In this paper, we investigate how tactile sensing can transcend cross-embodiment differences across robotic systems in the context of collaborative manipulation. Consider tasks such as collaborative object carrying where the human-robot interaction is force rich. Learning and executing such skills requires the robot to comply to the human and to learn behaviors at the joint-torque level. However, most robots do not offer this compliance or provide access to their joint torques. To address this challenge, we present an approach that uses tactile sensors to transfer policies from robots with these capabilities to those without. We show how our method can enable a cooperative task where a robot and human must work together to maneuver objects through space. We first demonstrate the skill on an impedance control-capable robot equipped with tactile sensing, then show the positive transfer of the tactile policy to a planar prismatic robot that is only capable of position control and does not come equipped with any sort of force/torque feedback, yet is able to comply to the human motions only using tactile feedback. Further details and videos can be found on our project website at this https URL.

Submitted: Sep 23, 2024