Paper ID: 2409.15135
Controllable Traffic Simulation through LLM-Guided Hierarchical Chain-of-Thought Reasoning
Zhiyuan Liu, Leheng Li, Yuning Wang, Haotian Lin, Zhizhe Liu, Lei He, Jianqiang Wang
Evaluating autonomous driving systems in complex and diverse traffic scenarios through controllable simulation is essential to ensure their safety and reliability. However, existing traffic simulation methods face challenges in their controllability. To address this, this paper proposes a novel diffusion-based and LLM-enhanced traffic simulation framework. Our approach incorporates a unique chain-of-thought (CoT) mechanism, which systematically examines the hierarchical structure of traffic elements and guides LLMs to thoroughly analyze traffic scenario descriptions step by step, enhancing their understanding of complex situations. Furthermore, we propose a Frenet-frame-based cost function framework that provides LLMs with geometrically meaningful quantities, improving their grasp of spatial relationships in a scenario and enabling more accurate cost function generation. Experiments on the Waymo Open Motion Dataset (WOMD) demonstrate that our method handles more intricate descriptions, generates a broader range of scenarios in a controllable manner, and outperforms existing diffusion-based methods in terms of efficiency.
Submitted: Sep 23, 2024