Paper ID: 2409.15298
Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking Language Model
Kaiwen Tang, Zhanglu Yan, Weng-Fai Wong
For reasons such as privacy, there are use cases for language models at the edge. This has given rise to small language models (SLMs) targeted for deployment in resource-constrained devices where energy efficiency is a significant concern. Spiking neural networks (SNNs) offer a promising solution due to their energy efficiency, and there are already works on realizing transformer-based models on SNNs. However, key operations like softmax and layer normalization (LN) are difficult to implement on neuromorphic hardware, and many of these early works sidestepped them. To address these challenges, we introduce Sorbet, a transformer-based spiking language model that is more neuromorphic hardware-compatible. Sorbet incorporates a novel shifting-based softmax called PTsoftmax and a power normalization method using bit-shifting (BSPN), both designed to replace the respective energy-intensive operations. By leveraging knowledge distillation and model quantization, Sorbet achieved a highly compressed binary weight model that maintains competitive performance while significantly reducing energy consumption. We validate Sorbet's effectiveness through extensive testing on the GLUE benchmark and a series of ablation studies, demonstrating its potential as an energy-efficient solution for language model inference.
Submitted: Sep 4, 2024