Paper ID: 2409.15687
A Comprehensive Evaluation of Large Language Models on Mental Illnesses
Abdelrahman Hanafi, Mohammed Saad, Noureldin Zahran, Radwa J. Hanafy, Mohammed E. Fouda
Large language models have shown promise in various domains, including healthcare. In this study, we conduct a comprehensive evaluation of LLMs in the context of mental health tasks using social media data. We explore the zero-shot (ZS) and few-shot (FS) capabilities of various LLMs, including GPT-4, Llama 3, Gemini, and others, on tasks such as binary disorder detection, disorder severity evaluation, and psychiatric knowledge assessment. Our evaluation involved 33 models testing 9 main prompt templates across the tasks. Key findings revealed that models like GPT-4 and Llama 3 exhibited superior performance in binary disorder detection, with accuracies reaching up to 85% on certain datasets. Moreover, prompt engineering played a crucial role in enhancing model performance. Notably, the Mixtral 8x22b model showed an improvement of over 20%, while Gemma 7b experienced a similar boost in performance. In the task of disorder severity evaluation, we observed that FS learning significantly improved the model's accuracy, highlighting the importance of contextual examples in complex assessments. Notably, the Phi-3-mini model exhibited a substantial increase in performance, with balanced accuracy improving by over 6.80% and mean average error dropping by nearly 1.3 when moving from ZS to FS learning. In the psychiatric knowledge task, recent models generally outperformed older, larger counterparts, with the Llama 3.1 405b achieving an accuracy of 91.2%. Despite promising results, our analysis identified several challenges, including variability in performance across datasets and the need for careful prompt engineering. Furthermore, the ethical guards imposed by many LLM providers hamper the ability to accurately evaluate their performance, due to tendency to not respond to potentially sensitive queries.
Submitted: Sep 24, 2024