Paper ID: 2409.15849
Twin Network Augmentation: A Novel Training Strategy for Improved Spiking Neural Networks and Efficient Weight Quantization
Lucas Deckers, Benjamin Vandersmissen, Ing Jyh Tsang, Werner Van Leekwijck, Steven Latré
The proliferation of Artificial Neural Networks (ANNs) has led to increased energy consumption, raising concerns about their sustainability. Spiking Neural Networks (SNNs), which are inspired by biological neural systems and operate using sparse, event-driven spikes to communicate information between neurons, offer a potential solution due to their lower energy requirements. An alternative technique for reducing a neural network's footprint is quantization, which compresses weight representations to decrease memory usage and energy consumption. In this study, we present Twin Network Augmentation (TNA), a novel training framework aimed at improving the performance of SNNs while also facilitating an enhanced compression through low-precision quantization of weights. TNA involves co-training an SNN with a twin network, optimizing both networks to minimize their cross-entropy losses and the mean squared error between their output logits. We demonstrate that TNA significantly enhances classification performance across various vision datasets and in addition is particularly effective when applied when reducing SNNs to ternary weight precision. Notably, during inference , only the ternary SNN is retained, significantly reducing the network in number of neurons, connectivity and weight size representation. Our results show that TNA outperforms traditional knowledge distillation methods and achieves state-of-the-art performance for the evaluated network architecture on benchmark datasets, including CIFAR-10, CIFAR-100, and CIFAR-10-DVS. This paper underscores the effectiveness of TNA in bridging the performance gap between SNNs and ANNs and suggests further exploration into the application of TNA in different network architectures and datasets.
Submitted: Sep 24, 2024