Paper ID: 2409.15940

A Formalization of Image Vectorization by Region Merging

Roy Y. He, Sung Ha Kang, Jean-Michel Morel

Image vectorization converts raster images into vector graphics composed of regions separated by curves. Typical vectorization methods first define the regions by grouping similar colored regions via color quantization, then approximate their boundaries by Bezier curves. In that way, the raster input is converted into an SVG format parameterizing the regions' colors and the Bezier control points. This compact representation has many graphical applications thanks to its universality and resolution-independence. In this paper, we remark that image vectorization is nothing but an image segmentation, and that it can be built by fine to coarse region merging. Our analysis of the problem leads us to propose a vectorization method alternating region merging and curve smoothing. We formalize the method by alternate operations on the dual and primal graph induced from any domain partition. In that way, we address a limitation of current vectorization methods, which separate the update of regional information from curve approximation. We formalize region merging methods by associating them with various gain functionals, including the classic Beaulieu-Goldberg and Mumford-Shah functionals. More generally, we introduce and compare region merging criteria involving region number, scale, area, and internal standard deviation. We also show that the curve smoothing, implicit in all vectorization methods, can be performed by the shape-preserving affine scale space. We extend this flow to a network of curves and give a sufficient condition for the topological preservation of the segmentation. The general vectorization method that follows from this analysis shows explainable behaviors, explicitly controlled by a few intuitive parameters. It is experimentally compared to state-of-the-art software and proved to have comparable or superior fidelity and cost efficiency.

Submitted: Sep 24, 2024