Paper ID: 2409.16290

Computer Aided Detection and Classification of mammograms using Convolutional Neural Network

Kashif Ishaq, Muhammad Mustagis

Breast cancer is one of the most major causes of death among women, after lung cancer. Breast cancer detection advancements can increase the survival rate of patients through earlier detection. Breast cancer that can be detected by using mammographic imaging is now considered crucial step for computer aided systems. Researchers have explained many techniques for the automatic detection of initial tumors. The early breast cancer symptoms include masses and micro-calcifications. Because there is the variation in the tumor shape, size and position it is difficult to extract abnormal region from normal tissues. So, machine learning can help medical professionals make more accurate diagnoses of the disease whereas deep learning or neural networks are one of the methods that can be used to distinguish regular and irregular breast identification. In this study the extraction method for the classification of breast masses as normal and abnormal we have used is convolutional neural network (CNN) on mammograms. DDSM dataset has been used in which nearly 460 images are of normal and 920 of abnormal breasts.

Submitted: Sep 4, 2024