Paper ID: 2409.16604
Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement
Guanlin Li, Ke Zhang, Ting Wang, Ming Li, Bin Zhao, Xuelong Li
Despite the impressive advancements made in recent low-light image enhancement techniques, the scarcity of paired data has emerged as a significant obstacle to further advancements. This work proposes a mean-teacher-based semi-supervised low-light enhancement (Semi-LLIE) framework that integrates the unpaired data into model training. The mean-teacher technique is a prominent semi-supervised learning method, successfully adopted for addressing high-level and low-level vision tasks. However, two primary issues hinder the naive mean-teacher method from attaining optimal performance in low-light image enhancement. Firstly, pixel-wise consistency loss is insufficient for transferring realistic illumination distribution from the teacher to the student model, which results in color cast in the enhanced images. Secondly, cutting-edge image enhancement approaches fail to effectively cooperate with the mean-teacher framework to restore detailed information in dark areas due to their tendency to overlook modeling structured information within local regions. To mitigate the above issues, we first introduce a semantic-aware contrastive loss to faithfully transfer the illumination distribution, contributing to enhancing images with natural colors. Then, we design a Mamba-based low-light image enhancement backbone to effectively enhance Mamba's local region pixel relationship representation ability with a multi-scale feature learning scheme, facilitating the generation of images with rich textural details. Further, we propose novel perceptive loss based on the large-scale vision-language Recognize Anything Model (RAM) to help generate enhanced images with richer textual details. The experimental results indicate that our Semi-LLIE surpasses existing methods in both quantitative and qualitative metrics.
Submitted: Sep 25, 2024