Paper ID: 2409.16726

Verified Relative Safety Margins for Neural Network Twins

Anahita Baninajjar, Kamran Hosseini, Ahmed Rezine, Amir Aminifar

Given two Deep Neural Network (DNN) classifiers with the same input and output domains, our goal is to quantify the robustness of the two networks in relation to each other. Towards this, we introduce the notion of Relative Safety Margins (RSMs). Intuitively, given two classes and a common input, RSM of one classifier with respect to another reflects the relative margins with which decisions are made. The proposed notion is relevant in the context of several applications domains, including to compare a trained network and its corresponding compact network (e.g., pruned, quantized, distilled network). Not only can RSMs establish whether decisions are preserved, but they can also quantify their qualities. We also propose a framework to establish safe bounds on RSM gains or losses given an input and a family of perturbations. We evaluate our approach using the MNIST, CIFAR10, and two real-world medical datasets, to show the relevance of our results.

Submitted: Sep 25, 2024