Paper ID: 2409.17011
LLM-CARD: Towards a Description and Landscape of Large Language Models
Shengwei Tian, Lifeng Han, Erick Mendez Guzman, Goran Nenadic
With the rapid growth of the Natural Language Processing (NLP) field, a vast variety of Large Language Models (LLMs) continue to emerge for diverse NLP tasks. As an increasing number of papers are presented, researchers and developers face the challenge of information overload. Thus, it is particularly important to develop a system that can automatically extract and organise key information about LLMs from academic papers (\textbf{LLM model card}). This work is to develop such a pioneer system by using Named Entity Recognition (\textbf{NER}) and Relation Extraction (\textbf{RE}) methods that automatically extract key information about large language models from the papers, helping researchers to efficiently access information about LLMs. These features include model \textit{licence}, model \textit{name}, and model \textit{application}. With these features, we can form a model card for each paper. \textbf{Data-contribution} wise, 106 academic papers were processed by defining three dictionaries - LLMs name, licence, and application. 11,051 sentences were extracted through dictionary lookup, and the dataset was constructed through manual review of the final selection of 129 sentences that have a link between the name and the licence, and 106 sentences that have a link between the model name and the application.
Submitted: Sep 25, 2024