Paper ID: 2409.17045

GeoBiked: A Dataset with Geometric Features and Automated Labeling Techniques to Enable Deep Generative Models in Engineering Design

Phillip Mueller, Sebastian Mueller, Lars Mikelsons

We provide a dataset for enabling Deep Generative Models (DGMs) in engineering design and propose methods to automate data labeling by utilizing large-scale foundation models. GeoBiked is curated to contain 4 355 bicycle images, annotated with structural and technical features and is used to investigate two automated labeling techniques: The utilization of consolidated latent features (Hyperfeatures) from image-generation models to detect geometric correspondences (e.g. the position of the wheel center) in structural images and the generation of diverse text descriptions for structural images. GPT-4o, a vision-language-model (VLM), is instructed to analyze images and produce diverse descriptions aligned with the system-prompt. By representing technical images as Diffusion-Hyperfeatures, drawing geometric correspondences between them is possible. The detection accuracy of geometric points in unseen samples is improved by presenting multiple annotated source images. GPT-4o has sufficient capabilities to generate accurate descriptions of technical images. Grounding the generation only on images leads to diverse descriptions but causes hallucinations, while grounding it on categorical labels restricts the diversity. Using both as input balances creativity and accuracy. Successfully using Hyperfeatures for geometric correspondence suggests that this approach can be used for general point-detection and annotation tasks in technical images. Labeling such images with text descriptions using VLMs is possible, but dependent on the models detection capabilities, careful prompt-engineering and the selection of input information. Applying foundation models in engineering design is largely unexplored. We aim to bridge this gap with a dataset to explore training, finetuning and conditioning DGMs in this field and suggesting approaches to bootstrap foundation models to process technical images.

Submitted: Sep 25, 2024