Paper ID: 2409.17165
Mamba for Scalable and Efficient Personalized Recommendations
Andrew Starnes, Clayton Webster
In this effort, we propose using the Mamba for handling tabular data in personalized recommendation systems. We present the \textit{FT-Mamba} (Feature Tokenizer\,$+$\,Mamba), a novel hybrid model that replaces Transformer layers with Mamba layers within the FT-Transformer architecture, for handling tabular data in personalized recommendation systems. The \textit{Mamba model} offers an efficient alternative to Transformers, reducing computational complexity from quadratic to linear by enhancing the capabilities of State Space Models (SSMs). FT-Mamba is designed to improve the scalability and efficiency of recommendation systems while maintaining performance. We evaluate FT-Mamba in comparison to a traditional Transformer-based model within a Two-Tower architecture on three datasets: Spotify music recommendation, H\&M fashion recommendation, and vaccine messaging recommendation. Each model is trained on 160,000 user-action pairs, and performance is measured using precision (P), recall (R), Mean Reciprocal Rank (MRR), and Hit Ratio (HR) at several truncation values. Our results demonstrate that FT-Mamba outperforms the Transformer-based model in terms of computational efficiency while maintaining or exceeding performance across key recommendation metrics. By leveraging Mamba layers, FT-Mamba provides a scalable and effective solution for large-scale personalized recommendation systems, showcasing the potential of the Mamba architecture to enhance both efficiency and accuracy.
Submitted: Sep 11, 2024