Paper ID: 2409.17166

ScriptSmith: A Unified LLM Framework for Enhancing IT Operations via Automated Bash Script Generation, Assessment, and Refinement

Oishik Chatterjee, Pooja Aggarwal, Suranjana Samanta, Ting Dai, Prateeti Mohapatra, Debanjana Kar, Ruchi Mahindru, Steve Barbieri, Eugen Postea, Brad Blancett, Arthur De Magalhaes

In the rapidly evolving landscape of site reliability engineering (SRE), the demand for efficient and effective solutions to manage and resolve issues in site and cloud applications is paramount. This paper presents an innovative approach to action automation using large language models (LLMs) for script generation, assessment, and refinement. By leveraging the capabilities of LLMs, we aim to significantly reduce the human effort involved in writing and debugging scripts, thereby enhancing the productivity of SRE teams. Our experiments focus on Bash scripts, a commonly used tool in SRE, and involve the CodeSift dataset of 100 tasks and the InterCode dataset of 153 tasks. The results show that LLMs can automatically assess and refine scripts efficiently, reducing the need for script validation in an execution environment. Results demonstrate that the framework shows an overall improvement of 7-10% in script generation.

Submitted: Sep 12, 2024