Paper ID: 2409.18396
Heterogeneous quantization regularizes spiking neural network activity
Roy Moyal, Kyrus R. Mama, Matthew Einhorn, Ayon Borthakur, Thomas A. Cleland
The learning and recognition of object features from unregulated input has been a longstanding challenge for artificial intelligence systems. Brains are adept at learning stable representations given small samples of noisy observations; across sensory modalities, this capacity is aided by a cascade of signal conditioning steps informed by domain knowledge. The olfactory system, in particular, solves a source separation and denoising problem compounded by concentration variability, environmental interference, and unpredictably correlated sensor affinities. To function optimally, its plastic network requires statistically well-behaved input. We present a data-blind neuromorphic signal conditioning strategy whereby analog data are normalized and quantized into spike phase representations. Input is delivered to a column of duplicated spiking principal neurons via heterogeneous synaptic weights; this regularizes layer utilization, yoking total activity to the network's operating range and rendering internal representations robust to uncontrolled open-set stimulus variance. We extend this mechanism by adding a data-aware calibration step whereby the range and density of the quantization weights adapt to accumulated input statistics, optimizing resource utilization by balancing activity regularization and information retention.
Submitted: Sep 27, 2024