Paper ID: 2409.18642
Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection
Ayush Kumar Sharma, Sourav Patel, Supriya Bharat Wakchaure, Abirami S
Network Intrusion Detection Systems (NIDS) are essential for protecting computer networks from malicious activities, including Denial of Service (DoS), Probing, User-to-Root (U2R), and Remote-to-Local (R2L) attacks. Without effective NIDS, networks are vulnerable to significant security breaches and data loss. Machine learning techniques provide a promising approach to enhance NIDS by automating threat detection and improving accuracy. In this research, we propose an Enhanced Convolutional Neural Network (EnCNN) for NIDS and evaluate its performance using the KDDCUP'99 dataset. Our methodology includes comprehensive data preprocessing, exploratory data analysis (EDA), and feature engineering. We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble. The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches. This demonstrates the effectiveness of EnCNN in real-time network intrusion detection, offering a robust solution for identifying and mitigating security threats, and enhancing overall network resilience.
Submitted: Sep 27, 2024