Paper ID: 2409.18986

Lab-AI -- Retrieval-Augmented Language Model for Personalized Lab Test Interpretation in Clinical Medicine

Xiaoyu Wang, Haoyong Ouyang, Balu Bhasuran, Xiao Luo, Karim Hanna, Mia Liza A. Lustria, Zhe He

Accurate interpretation of lab results is crucial in clinical medicine, yet most patient portals use universal normal ranges, ignoring factors like age and gender. This study introduces Lab-AI, an interactive system that offers personalized normal ranges using Retrieval-Augmented Generation (RAG) from credible health sources. Lab-AI has two modules: factor retrieval and normal range retrieval. We tested these on 68 lab tests-30 with conditional factors and 38 without. For tests with factors, normal ranges depend on patient-specific information. Our results show that GPT-4-turbo with RAG achieved a 0.95 F1 score for factor retrieval and 0.993 accuracy for normal range retrieval. GPT-4-turbo with RAG outperformed the best non-RAG system by 29.1% in factor retrieval and showed 60.9% and 52.9% improvements in question-level and lab-level performance, respectively, for normal range retrieval. These findings highlight Lab-AI's potential to enhance patient understanding of lab results.

Submitted: Sep 16, 2024