Paper ID: 2409.18992
A Review of Mechanistic Models of Event Comprehension
Tan T. Nguyen
This review examines theoretical assumptions and computational models of event comprehension, tracing the evolution from discourse comprehension theories to contemporary event cognition frameworks. The review covers key discourse comprehension accounts, including Construction-Integration, Event Indexing, Causal Network, and Resonance models, highlighting their contributions to understanding cognitive processes in comprehension. I then discuss contemporary theoretical frameworks of event comprehension, including Event Segmentation Theory (Zacks et al., 2007), the Event Horizon Model (Radvansky & Zacks, 2014), and Hierarchical Generative Framework (Kuperberg, 2021), which emphasize prediction, causality, and multilevel representations in event understanding. Building on these theories, I evaluate five computational models of event comprehension: REPRISE (Butz et al., 2019), Structured Event Memory (SEM; Franklin et al., 2020), the Lu model (Lu et al., 2022), the Gumbsch model (Gumbsch et al., 2022), and the Elman and McRae model (2019). The analysis focuses on their approaches to hierarchical processing, prediction mechanisms, and representation learning. Key themes that emerge include the use of hierarchical structures as inductive biases, the importance of prediction in comprehension, and diverse strategies for learning event dynamics. The review identifies critical areas for future research, including the need for more sophisticated approaches to learning structured representations, integrating episodic memory mechanisms, and developing adaptive updating algorithms for working event models. By synthesizing insights from both theoretical frameworks and computational implementations, this review aims to advance our understanding of human event comprehension and guide future modeling efforts in cognitive science.
Submitted: Sep 17, 2024