Paper ID: 2409.19007
Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks
Liujianfu Wang, Yuyang Du, Jingqi Lin, Kexin Chen, Soung Chang Liew
Large language models (LLMs) are being widely researched across various disciplines, with significant recent efforts focusing on adapting LLMs for understanding of how communication networks operate. However, over-reliance on prompting techniques hinders the full exploitation of the generalization ability of these models, and the lack of efficient fine-tuning methods prevents the full realization of lightweight LLMs' potential. This paper addresses these challenges by introducing our Rephrase and Contrast (RaC) framework, an efficient fine-tuning framework. RaC enhances LLMs' comprehension and critical thinking abilities by incorporating question reformulation and contrastive analysis of correct and incorrect answers during the fine-tuning process. Experimental results demonstrate a 63.73% accuracy improvement over the foundational model when tested on a comprehensive networking problem set. Moreover, to efficiently construct the dataset for RaC fine-tuning, we develop a GPT-assisted data mining method for generating high-quality question-answer (QA) pairs; furthermore, we introduce ChoiceBoost, a data augmentation technique that expands dataset size while reducing answer-order bias. Apart from these technical innovations, we contribute to the networking community by open-sourcing valuable research resources, including: 1) the fine-tuned networking model referred to as RaC-Net, 2) the training dataset used for fine-tuning the model, 3) three testing problem sets of different difficulties to serve as benchmarks for future research, and 4) code associated with the above resources.
Submitted: Sep 21, 2024