Paper ID: 2409.19146

Bound Tightening Network for Robust Crowd Counting

Qiming Wu

Crowd Counting is a fundamental topic, aiming to estimate the number of individuals in the crowded images or videos fed from surveillance cameras. Recent works focus on improving counting accuracy, while ignoring the certified robustness of counting models. In this paper, we propose a novel Bound Tightening Network (BTN) for Robust Crowd Counting. It consists of three parts: base model, smooth regularization module and certify bound module. The core idea is to propagate the interval bound through the base model (certify bound module) and utilize the layer weights (smooth regularization module) to guide the network learning. Experiments on different benchmark datasets for counting demonstrate the effectiveness and efficiency of BTN.

Submitted: Sep 27, 2024