Paper ID: 2409.19182
Artificial-Intelligence Generated Code Considered Harmful: A Road Map for Secure and High-Quality Code Generation
Chun Jie Chong, Zhihao Yao, Iulian Neamtiu
Generating code via a LLM (rather than writing code from scratch), has exploded in popularity. However, the security implications of LLM-generated code are still unknown. We performed a study that compared the security and quality of human-written code with that of LLM-generated code, for a wide range of programming tasks, including data structures, algorithms, cryptographic routines, and LeetCode questions. To assess code security we used unit testing, fuzzing, and static analysis. For code quality, we focused on complexity and size. We found that LLM can generate incorrect code that fails to implement the required functionality, especially for more complicated tasks; such errors can be subtle. For example, for the cryptographic algorithm SHA1, LLM generated an incorrect implementation that nevertheless compiles. In cases where its functionality was correct, we found that LLM-generated code is less secure, primarily due to the lack of defensive programming constructs, which invites a host of security issues such as buffer overflows or integer overflows. Fuzzing has revealed that LLM-generated code is more prone to hangs and crashes than human-written code. Quality-wise, we found that LLM generates bare-bones code that lacks defensive programming constructs, and is typically more complex (per line of code) compared to human-written code. Next, we constructed a feedback loop that asked the LLM to re-generate the code and eliminate the found issues (e.g., malloc overflow, array index out of bounds, null dereferences). We found that the LLM fails to eliminate such issues consistently: while succeeding in some cases, we found instances where the re-generated, supposedly more secure code, contains new issues; we also found that upon prompting, LLM can introduce issues in files that were issues-free before prompting.
Submitted: Sep 27, 2024