Paper ID: 2409.19200
Faster Acceleration for Steepest Descent
Site Bai, Brian Bullins
We propose a new accelerated first-order method for convex optimization under non-Euclidean smoothness assumptions. In contrast to standard acceleration techniques, our approach uses primal-dual iterate sequences taken with respect to differing norms, which are then coupled using an implicitly determined interpolation parameter. For $\ell_p$ norm smooth problems in $d$ dimensions, our method provides an iteration complexity improvement of up to $O(d^{1-\frac{2}{p}})$ in terms of calls to a first-order oracle, thereby allowing us to circumvent long-standing barriers in accelerated non-Euclidean steepest descent.
Submitted: Sep 28, 2024