Paper ID: 2409.19616
DuoGNN: Topology-aware Graph Neural Network with Homophily and Heterophily Interaction-Decoupling
K. Mancini, I. Rekik
Graph Neural Networks (GNNs) have proven effective in various medical imaging applications, such as automated disease diagnosis. However, due to the local neighborhood aggregation paradigm in message passing which characterizes these models, they inherently suffer from two fundamental limitations: first, indistinguishable node embeddings due to heterophilic node aggregation (known as over-smoothing), and second, impaired message passing due to aggregation through graph bottlenecks (known as over-squashing). These challenges hinder the model expressiveness and prevent us from using deeper models to capture long-range node dependencies within the graph. Popular solutions in the literature are either too expensive to process large graphs due to high time complexity or do not generalize across all graph topologies. To address these limitations, we propose DuoGNN, a scalable and generalizable architecture which leverages topology to decouple homophilic and heterophilic edges and capture both short-range and long-range interactions. Our three core contributions introduce (i) a topological edge-filtering algorithm which extracts homophilic interactions and enables the model to generalize well for any graph topology, (ii) a heterophilic graph condensation technique which extracts heterophilic interactions and ensures scalability, and (iii) a dual homophilic and heterophilic aggregation pipeline which prevents over-smoothing and over-squashing during the message passing. We benchmark our model on medical and non-medical node classification datasets and compare it with its variants, showing consistent improvements across all tasks. Our DuoGNN code is available at this https URL.
Submitted: Sep 29, 2024