Paper ID: 2409.19824
Counterfactual Evaluation of Ads Ranking Models through Domain Adaptation
Mohamed A. Radwan, Himaghna Bhattacharjee, Quinn Lanners, Jiasheng Zhang, Serkan Karakulak, Houssam Nassif, Murat Ali Bayir
We propose a domain-adapted reward model that works alongside an Offline A/B testing system for evaluating ranking models. This approach effectively measures reward for ranking model changes in large-scale Ads recommender systems, where model-free methods like IPS are not feasible. Our experiments demonstrate that the proposed technique outperforms both the vanilla IPS method and approaches using non-generalized reward models.
Submitted: Sep 29, 2024