Paper ID: 2409.19948
JaPOC: Japanese Post-OCR Correction Benchmark using Vouchers
Masato Fujitake
In this paper, we create benchmarks and assess the effectiveness of error correction methods for Japanese vouchers in OCR (Optical Character Recognition) systems. It is essential for automation processing to correctly recognize scanned voucher text, such as the company name on invoices. However, perfect recognition is complex due to the noise, such as stamps. Therefore, it is crucial to correctly rectify erroneous OCR results. However, no publicly available OCR error correction benchmarks for Japanese exist, and methods have not been adequately researched. In this study, we measured text recognition accuracy by existing services on Japanese vouchers and developed a post-OCR correction benchmark. Then, we proposed simple baselines for error correction using language models and verified whether the proposed method could effectively correct these errors. In the experiments, the proposed error correction algorithm significantly improved overall recognition accuracy.
Submitted: Sep 30, 2024