Paper ID: 2409.20235
A general machine learning model of aluminosilicate melt viscosity and its application to the surface properties of dry lava planets
Charles Le Losq, Clément Ferraina, Paolo A. Sossi, Charles-Édouard Boukaré
Ultra-short-period exoplanets like K2-141 b likely have magma oceans on their dayside, which play a critical role in redistributing heat within the planet. This could lead to a warm nightside surface, measurable by the James Webb Space Telescope, offering insights into the planet's structure. Accurate models of properties like viscosity, which can vary by orders of magnitude, are essential for such studies. We present a new model for predicting molten magma viscosity, applicable in diverse scenarios, including magma oceans on lava planets. Using a database of 28,898 viscosity measurements on phospho-alumino-silicate melts, spanning superliquidus to undercooled temperatures and pressures up to 30 GPa, we trained a greybox artificial neural network, refined by a Gaussian process. This model achieves high predictive accuracy (RMSE $\approx 0.4 \log_{10}$ Pa$\cdot$s) and can handle compositions from SiO$_2$ to multicomponent magmatic and industrial glasses, accounting for pressure effects up to 30 GPa for compositions such as peridotite. Applying this model, we calculated the viscosity of K2-141 b's magma ocean under different compositions. Phase diagram calculations suggest that the dayside is fully molten, with extreme temperatures primarily controlling viscosity. A tenuous atmosphere (0.1 bar) might exist around a 40{\deg} radius from the substellar point. At higher longitudes, atmospheric pressure drops, and by 90{\deg}, magma viscosity rapidly increases as solidification occurs. The nightside surface is likely solid, but previously estimated surface temperatures above 400 K imply a partly molten mantle, feeding geothermal flux through vertical convection.
Submitted: Sep 30, 2024