Paper ID: 2409.20258
Inferring Preferences from Demonstrations in Multi-objective Reinforcement Learning
Junlin Lu, Patrick Mannion, Karl Mason
Many decision-making problems feature multiple objectives where it is not always possible to know the preferences of a human or agent decision-maker for different objectives. However, demonstrated behaviors from the decision-maker are often available. This research proposes a dynamic weight-based preference inference (DWPI) algorithm that can infer the preferences of agents acting in multi-objective decision-making problems from demonstrations. The proposed algorithm is evaluated on three multi-objective Markov decision processes: Deep Sea Treasure, Traffic, and Item Gathering, and is compared to two existing preference inference algorithms. Empirical results demonstrate significant improvements compared to the baseline algorithms, in terms of both time efficiency and inference accuracy. The DWPI algorithm maintains its performance when inferring preferences for sub-optimal demonstrations. Moreover, the DWPI algorithm does not necessitate any interactions with the user during inference - only demonstrations are required. We provide a correctness proof and complexity analysis of the algorithm and statistically evaluate the performance under different representation of demonstrations.
Submitted: Sep 30, 2024