Paper ID: 2409.20364
Efficient Driving Behavior Narration and Reasoning on Edge Device Using Large Language Models
Yizhou Huang, Yihua Cheng, Kezhi Wang
Deep learning architectures with powerful reasoning capabilities have driven significant advancements in autonomous driving technology. Large language models (LLMs) applied in this field can describe driving scenes and behaviors with a level of accuracy similar to human perception, particularly in visual tasks. Meanwhile, the rapid development of edge computing, with its advantage of proximity to data sources, has made edge devices increasingly important in autonomous driving. Edge devices process data locally, reducing transmission delays and bandwidth usage, and achieving faster response times. In this work, we propose a driving behavior narration and reasoning framework that applies LLMs to edge devices. The framework consists of multiple roadside units, with LLMs deployed on each unit. These roadside units collect road data and communicate via 5G NSR/NR networks. Our experiments show that LLMs deployed on edge devices can achieve satisfactory response speeds. Additionally, we propose a prompt strategy to enhance the narration and reasoning performance of the system. This strategy integrates multi-modal information, including environmental, agent, and motion data. Experiments conducted on the OpenDV-Youtube dataset demonstrate that our approach significantly improves performance across both tasks.
Submitted: Sep 30, 2024