Paper ID: 2410.00052
DelayPTC-LLM: Metro Passenger Travel Choice Prediction under Train Delays with Large Language Models
Chen Chen, Yuxin He, Hao Wang, Jingjing Chen, Qin Luo
Train delays can propagate rapidly throughout the Urban Rail Transit (URT) network under networked operation conditions, posing significant challenges to operational departments. Accurately predicting passenger travel choices under train delays can provide interpretable insights into the redistribution of passenger flow, offering crucial decision support for emergency response and service recovery. However, the diversity of travel choices due to passenger heterogeneity and the sparsity of delay events leads to issues of data sparsity and sample imbalance in the travel choices dataset under metro delays. It is challenging to model this problem using traditional machine learning approaches, which typically rely on large, balanced datasets. Given the strengths of large language models (LLMs) in text processing, understanding, and their capabilities in small-sample and even zero-shot learning, this paper proposes a novel Passenger Travel Choice prediction framework under metro delays with the Large Language Model (DelayPTC-LLM). The well-designed prompting engineering is developed to guide the LLM in making and rationalizing predictions about travel choices, taking into account passenger heterogeneity and features of the delay events. Utilizing real-world data from Shenzhen Metro, including Automated Fare Collection (AFC) data and detailed delay logs, a comparative analysis of DelayPTC-LLM with traditional prediction models demonstrates the superior capability of LLMs in handling complex, sparse datasets commonly encountered under disruption of transportation systems. The results validate the advantages of DelayPTC-LLM in terms of predictive accuracy and its potential to provide actionable insights for big traffic data.
Submitted: Sep 28, 2024