Paper ID: 2410.00360
TFCT-I2P: Three stream fusion network with color aware transformer for image-to-point cloud registration
Muyao Peng, Pei An, Zichen Wan, You Yang, Qiong Liu
Along with the advancements in artificial intelligence technologies, image-to-point-cloud registration (I2P) techniques have made significant strides. Nevertheless, the dimensional differences in the features of points cloud (three-dimension) and image (two-dimension) continue to pose considerable challenges to their development. The primary challenge resides in the inability to leverage the features of one modality to augment those of another, thereby complicating the alignment of features within the latent space. To address this challenge, we propose an image-to-point-cloud method named as TFCT-I2P. Initially, we introduce a Three-Stream Fusion Network (TFN), which integrates color information from images with structural information from point clouds, facilitating the alignment of features from both modalities. Subsequently, to effectively mitigate patch-level misalignments introduced by the inclusion of color information, we design a Color-Aware Transformer (CAT). Finally, we conduct extensive experiments on 7Scenes, RGB-D Scenes V2, ScanNet V2, and a self-collected dataset. The results demonstrate that TFCT-I2P surpasses state-of-the-art methods by 1.5% in Inlier Ratio, 0.4% in Feature Matching Recall, and 5.4% in Registration Recall. Therefore, we believe that the proposed TFCT-I2P contributes to the advancement of I2P registration.
Submitted: Oct 1, 2024