Paper ID: 2410.00572
Obstacle-Avoidant Leader Following with a Quadruped Robot
Carmen Scheidemann, Lennart Werner, Victor Reijgwart, Andrei Cramariuc, Joris Chomarat, Jia-Ruei Chiu, Roland Siegwart, Marco Hutter
Personal mobile robotic assistants are expected to find wide applications in industry and healthcare. For example, people with limited mobility can benefit from robots helping with daily tasks, or construction workers can have robots perform precision monitoring tasks on-site. However, manually steering a robot while in motion requires significant concentration from the operator, especially in tight or crowded spaces. This reduces walking speed, and the constant need for vigilance increases fatigue and, thus, the risk of accidents. This work presents a virtual leash with which a robot can naturally follow an operator. We use a sensor fusion based on a custom-built RF transponder, RGB cameras, and a LiDAR. In addition, we customize a local avoidance planner for legged platforms, which enables us to navigate dynamic and narrow environments. We successfully validate on the ANYmal platform the robustness and performance of our entire pipeline in real-world experiments.
Submitted: Oct 1, 2024