Paper ID: 2410.00660
Stabilizing the Kumaraswamy Distribution
Max Wasserman, Gonzalo Mateos
Large-scale latent variable models require expressive continuous distributions that support efficient sampling and low-variance differentiation, achievable through the reparameterization trick. The Kumaraswamy (KS) distribution is both expressive and supports the reparameterization trick with a simple closed-form inverse CDF. Yet, its adoption remains limited. We identify and resolve numerical instabilities in the inverse CDF and log-pdf, exposing issues in libraries like PyTorch and TensorFlow. We then introduce simple and scalable latent variable models based on the KS, improving exploration-exploitation trade-offs in contextual multi-armed bandits and enhancing uncertainty quantification for link prediction with graph neural networks. Our results support the stabilized KS distribution as a core component in scalable variational models for bounded latent variables.
Submitted: Oct 1, 2024