Paper ID: 2410.00979

Towards Full-parameter and Parameter-efficient Self-learning For Endoscopic Camera Depth Estimation

Shuting Zhao, Chenkang Du, Kristin Qi, Xinrong Chen, Xinhan Di

Adaptation methods are developed to adapt depth foundation models to endoscopic depth estimation recently. However, such approaches typically under-perform training since they limit the parameter search to a low-rank subspace and alter the training dynamics. Therefore, we propose a full-parameter and parameter-efficient learning framework for endoscopic depth estimation. At the first stage, the subspace of attention, convolution and multi-layer perception are adapted simultaneously within different sub-spaces. At the second stage, a memory-efficient optimization is proposed for subspace composition and the performance is further improved in the united sub-space. Initial experiments on the SCARED dataset demonstrate that results at the first stage improves the performance from 10.2% to 4.1% for Sq Rel, Abs Rel, RMSE and RMSE log in the comparison with the state-of-the-art models.

Submitted: Oct 1, 2024