Paper ID: 2410.01239

Replacement Learning: Training Vision Tasks with Fewer Learnable Parameters

Yuming Zhang, Peizhe Wang, Shouxin Zhang, Dongzhi Guan, Jiabin Liu, Junhao Su

Traditional end-to-end deep learning models often enhance feature representation and overall performance by increasing the depth and complexity of the network during training. However, this approach inevitably introduces issues of parameter redundancy and resource inefficiency, especially in deeper networks. While existing works attempt to skip certain redundant layers to alleviate these problems, challenges related to poor performance, computational complexity, and inefficient memory usage remain. To address these issues, we propose an innovative training approach called Replacement Learning, which mitigates these limitations by completely replacing all the parameters of the frozen layers with only two learnable parameters. Specifically, Replacement Learning selectively freezes the parameters of certain layers, and the frozen layers utilize parameters from adjacent layers, updating them through a parameter integration mechanism controlled by two learnable parameters. This method leverages information from surrounding structures, reduces computation, conserves GPU memory, and maintains a balance between historical context and new inputs, ultimately enhancing overall model performance. We conducted experiments across four benchmark datasets, including CIFAR-10, STL-10, SVHN, and ImageNet, utilizing various architectures such as CNNs and ViTs to validate the effectiveness of Replacement Learning. Experimental results demonstrate that our approach reduces the number of parameters, training time, and memory consumption while completely surpassing the performance of end-to-end training.

Submitted: Oct 2, 2024