Paper ID: 2410.01656
Efficient Statistics With Unknown Truncation, Polynomial Time Algorithms, Beyond Gaussians
Jane H. Lee, Anay Mehrotra, Manolis Zampetakis
We study the estimation of distributional parameters when samples are shown only if they fall in some unknown set $S \subseteq \mathbb{R}^d$. Kontonis, Tzamos, and Zampetakis (FOCS'19) gave a $d^{\mathrm{poly}(1/\varepsilon)}$ time algorithm for finding $\varepsilon$-accurate parameters for the special case of Gaussian distributions with diagonal covariance matrix. Recently, Diakonikolas, Kane, Pittas, and Zarifis (COLT'24) showed that this exponential dependence on $1/\varepsilon$ is necessary even when $S$ belongs to some well-behaved classes. These works leave the following open problems which we address in this work: Can we estimate the parameters of any Gaussian or even extend beyond Gaussians? Can we design $\mathrm{poly}(d/\varepsilon)$ time algorithms when $S$ is a simple set such as a halfspace? We make progress on both of these questions by providing the following results: 1. Toward the first question, we give a $d^{\mathrm{poly}(\ell/\varepsilon)}$ time algorithm for any exponential family that satisfies some structural assumptions and any unknown set $S$ that is $\varepsilon$-approximable by degree-$\ell$ polynomials. This result has two important applications: 1a) The first algorithm for estimating arbitrary Gaussian distributions from samples truncated to an unknown $S$; and 1b) The first algorithm for linear regression with unknown truncation and Gaussian features. 2. To address the second question, we provide an algorithm with runtime $\mathrm{poly}(d/\varepsilon)$ that works for a set of exponential families (containing all Gaussians) when $S$ is a halfspace or an axis-aligned rectangle. Along the way, we develop tools that may be of independent interest, including, a reduction from PAC learning with positive and unlabeled samples to PAC learning with positive and negative samples that is robust to certain covariate shifts.
Submitted: Oct 2, 2024