Paper ID: 2410.01939
Equality Constrained Diffusion for Direct Trajectory Optimization
Vince Kurtz, Joel W. Burdick
The recent success of diffusion-based generative models in image and natural language processing has ignited interest in diffusion-based trajectory optimization for nonlinear control systems. Existing methods cannot, however, handle the nonlinear equality constraints necessary for direct trajectory optimization. As a result, diffusion-based trajectory optimizers are currently limited to shooting methods, where the nonlinear dynamics are enforced by forward rollouts. This precludes many of the benefits enjoyed by direct methods, including flexible state constraints, reduced numerical sensitivity, and easy initial guess specification. In this paper, we present a method for diffusion-based optimization with equality constraints. This allows us to perform direct trajectory optimization, enforcing dynamic feasibility with constraints rather than rollouts. To the best of our knowledge, this is the first diffusion-based optimization algorithm that supports the general nonlinear equality constraints required for direct trajectory optimization.
Submitted: Oct 2, 2024