Paper ID: 2410.02072
Learning from the Giants: A Practical Approach to Underwater Depth and Surface Normals Estimation
Alzayat Saleh, Melanie Olsen, Bouchra Senadji, Mostafa Rahimi Azghadi
Monocular Depth and Surface Normals Estimation (MDSNE) is crucial for tasks such as 3D reconstruction, autonomous navigation, and underwater exploration. Current methods rely either on discriminative models, which struggle with transparent or reflective surfaces, or generative models, which, while accurate, are computationally expensive. This paper presents a novel deep learning model for MDSNE, specifically tailored for underwater environments, using a hybrid architecture that integrates Convolutional Neural Networks (CNNs) with Transformers, leveraging the strengths of both approaches. Training effective MDSNE models is often hampered by noisy real-world datasets and the limited generalization of synthetic datasets. To address this, we generate pseudo-labeled real data using multiple pre-trained MDSNE models. To ensure the quality of this data, we propose the Depth Normal Evaluation and Selection Algorithm (DNESA), which evaluates and selects the most reliable pseudo-labeled samples using domain-specific metrics. A lightweight student model is then trained on this curated dataset. Our model reduces parameters by 90% and training costs by 80%, allowing real-time 3D perception on resource-constrained devices. Key contributions include: a novel and efficient MDSNE model, the DNESA algorithm, a domain-specific data pipeline, and a focus on real-time performance and scalability. Designed for real-world underwater applications, our model facilitates low-cost deployments in underwater robots and autonomous vehicles, bridging the gap between research and practical implementation.
Submitted: Oct 2, 2024