Paper ID: 2410.02106
Safe Navigation in Unmapped Environments for Robotic Systems with Input Constraints
Amirsaeid Safari, Jesse B. Hoagg
This paper presents an approach for navigation and control in unmapped environments under input and state constraints using a composite control barrier function (CBF). We consider the scenario where real-time perception feedback (e.g., LiDAR) is used online to construct a local CBF that models local state constraints (e.g., local safety constraints such as obstacles) in the a priori unmapped environment. The approach employs a soft-maximum function to synthesize a single time-varying CBF from the N most recently obtained local CBFs. Next, the input constraints are transformed into controller-state constraints through the use of control dynamics. Then, we use a soft-minimum function to compose the input constraints with the time-varying CBF that models the a priori unmapped environment. This composition yields a single relaxed CBF, which is used in a constrained optimization to obtain an optimal control that satisfies the state and input constraints. The approach is validated through simulations of a nonholonomic ground robot that is equipped with LiDAR and navigates an unmapped environment. The robot successfully navigates the environment while avoiding the a priori unmapped obstacles and satisfying both speed and input constraints.
Submitted: Oct 3, 2024