Paper ID: 2410.02121
SC-CDM: Enhancing Quality of Image Semantic Communication with a Compact Diffusion Model
Kexin Zhang, Lixin Li, Wensheng Lin, Yuna Yan, Wenchi Cheng, Zhu Han
Semantic Communication (SC) is an emerging technology that has attracted much attention in the sixth-generation (6G) mobile communication systems. However, few literature has fully considered the perceptual quality of the reconstructed image. To solve this problem, we propose a generative SC for wireless image transmission (denoted as SC-CDM). This approach leverages compact diffusion models to improve the fidelity and semantic accuracy of the images reconstructed after transmission, ensuring that the essential content is preserved even in bandwidth-constrained environments. Specifically, we aim to redesign the swin Transformer as a new backbone for efficient semantic feature extraction and compression. Next, the receiver integrates the slim prior and image reconstruction networks. Compared to traditional Diffusion Models (DMs), it leverages DMs' robust distribution mapping capability to generate a compact condition vector, guiding image recovery, thus enhancing the perceptual details of the reconstructed images. Finally, a series of evaluation and ablation studies are conducted to validate the effectiveness and robustness of the proposed algorithm and further increase the Peak Signal-to-Noise Ratio (PSNR) by over 17% on top of CNN-based DeepJSCC.
Submitted: Oct 3, 2024