Paper ID: 2410.02136

Disentangled Representation Learning for Parametric Partial Differential Equations

Ning Liu, Lu Zhang, Tian Gao, Yue Yu

Neural operators (NOs) have demonstrated remarkable success in learning mappings between function spaces, serving as efficient approximators for the forward solutions of complex physical systems governed by partial differential equations (PDEs). However, while effective as black-box solvers, they offer limited insight into the underlying physical mechanism, due to the lack of interpretable representations of the physical parameters that drive the system. To tackle this challenge, we propose a new paradigm for learning disentangled representations from neural operator parameters, thereby effectively solving an inverse problem. Specifically, we introduce DisentangO, a novel hyper-neural operator architecture designed to unveil and disentangle the latent physical factors of variation embedded within the black-box neural operator parameters. At the core of DisentangO is a multi-task neural operator architecture that distills the varying parameters of the governing PDE through a task-wise adaptive layer, coupled with a hierarchical variational autoencoder that disentangles these variations into identifiable latent factors. By learning these disentangled representations, our model not only enhances physical interpretability but also enables more robust generalization across diverse physical systems. Empirical evaluations across supervised, semi-supervised, and unsupervised learning contexts show that DisentangO effectively extracts meaningful and interpretable latent features, bridging the divide between predictive performance and physical understanding in neural operator frameworks.

Submitted: Oct 3, 2024