Paper ID: 2410.02208

Fast nonparametric feature selection with error control using integrated path stability selection

Omar Melikechi, David B. Dunson, Jeffrey W. Miller

Feature selection can greatly improve performance and interpretability in machine learning problems. However, existing nonparametric feature selection methods either lack theoretical error control or fail to accurately control errors in practice. Many methods are also slow, especially in high dimensions. In this paper, we introduce a general feature selection method that applies integrated path stability selection to thresholding to control false positives and the false discovery rate. The method also estimates q-values, which are better suited to high-dimensional data than p-values. We focus on two special cases of the general method based on gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive simulations with RNA sequencing data show that IPSSGB and IPSSRF have better error control, detect more true positives, and are faster than existing methods. We also use both methods to detect microRNAs and genes related to ovarian cancer, finding that they make better predictions with fewer features than other methods.

Submitted: Oct 3, 2024