Paper ID: 2410.02338
How Much Can RAG Help the Reasoning of LLM?
Jingyu Liu, Jiaen Lin, Yong Liu
Retrieval-Augmented Generation (RAG) has gained significant popularity in modern Large Language Models (LLMs) due to its effectiveness in introducing new knowledge and reducing hallucinations. However, the deep understanding of RAG remains limited, how does RAG help the reasoning process and can RAG help improve the reasoning capability remains question. While external documents are typically considered as a method to incorporate domain-specific information, they also contain intermediate reasoning results related to the query, this suggests that documents could enhance the reasoning capability of LLMs, which has not been previously explored. In this paper, we investigate this issue in depth and find that while RAG can assist with reasoning, the help is limited. If we conceptualize the reasoning process as a tree with fixed depth, then RAG struggles to assist LLMs in performing deeper reasoning. Additionally, the information in the documents requires preprocessing to filter out noise. We demonstrate that this preprocessing is difficult to achieve simply fine-tuning of the LLM, it often necessitates numerous additional transformer layers to solve the problem. To simplify the problem, we propose DPrompt tuning, which effectively resolves the issue within just limited transformer layers, leading to improved performance.
Submitted: Oct 3, 2024