Paper ID: 2410.02916

Safeguard is a Double-edged Sword: Denial-of-service Attack on Large Language Models

Qingzhao Zhang, Ziyang Xiong, Z. Morley Mao

Safety is a paramount concern of large language models (LLMs) in their open deployment. To this end, safeguard methods aim to enforce the ethical and responsible use of LLMs through safety alignment or guardrail mechanisms. However, we found that the malicious attackers could exploit false positives of safeguards, i.e., fooling the safeguard model to block safe content mistakenly, leading to a new denial-of-service (DoS) attack on LLMs. Specifically, by software or phishing attacks on user client software, attackers insert a short, seemingly innocuous adversarial prompt into to user prompt templates in configuration files; thus, this prompt appears in final user requests without visibility in the user interface and is not trivial to identify. By designing an optimization process that utilizes gradient and attention information, our attack can automatically generate seemingly safe adversarial prompts, approximately only 30 characters long, that universally block over 97\% of user requests on Llama Guard 3. The attack presents a new dimension of evaluating LLM safeguards focusing on false positives, fundamentally different from the classic jailbreak.

Submitted: Oct 3, 2024