Paper ID: 2410.03041
Minmax Trend Filtering: A Locally Adaptive Nonparametric Regression Method via Pointwise Min Max Optimization
Sabyasachi Chatterjee
Trend Filtering is a nonparametric regression method which exhibits local adaptivity, in contrast to a host of classical linear smoothing methods. However, there seems to be no unanimously agreed upon definition of local adaptivity in the literature. A question we seek to answer here is how exactly is Fused Lasso or Total Variation Denoising, which is Trend Filtering of order $0$, locally adaptive? To answer this question, we first derive a new pointwise formula for the Fused Lasso estimator in terms of min-max/max-min optimization of penalized local averages. This pointwise representation appears to be new and gives a concrete explanation of the local adaptivity of Fused Lasso. It yields that the estimation error of Fused Lasso at any given point is bounded by the best (local) bias variance tradeoff where bias and variance have a slightly different meaning than usual. We then propose higher order polynomial versions of Fused Lasso which are defined pointwise in terms of min-max/max-min optimization of penalized local polynomial regressions. These appear to be new nonparametric regression methods, different from any existing method in the nonparametric regression toolbox. We call these estimators Minmax Trend Filtering. They continue to enjoy the notion of local adaptivity in the sense that their estimation error at any given point is bounded by the best (local) bias variance tradeoff.
Submitted: Oct 3, 2024