Paper ID: 2410.03045
Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization
Sumin Lee, Namwoo Kang
Mechanisms are designed to perform functions in various fields. Often, there is no unique mechanism that performs a well-defined function. For example, vehicle suspensions are designed to improve driving performance and ride comfort, but different types are available depending on the environment. This variability in design makes performance comparison difficult. Additionally, the traditional design process is multi-step, gradually reducing the number of design candidates while performing costly analyses to meet target performance. Recently, AI models have been used to reduce the computational cost of FEA. However, there are limitations in data availability and different analysis environments, especially when transitioning from low-fidelity to high-fidelity analysis. In this paper, we propose a multi-fidelity design framework aimed at recommending optimal types and designs of mechanical mechanisms. As an application, vehicle suspension systems were selected, and several types were defined. For each type, mechanism parameters were generated and converted into 3D CAD models, followed by low-fidelity rigid body dynamic analysis under driving conditions. To effectively build a deep learning-based multi-fidelity surrogate model, the results of the low-fidelity analysis were analyzed using DBSCAN and sampled at 5% for high-cost flexible body dynamic analysis. After training the multi-fidelity model, a multi-objective optimization problem was formulated for the performance metrics of each suspension type. Finally, we recommend the optimal type and design based on the input to optimize ride comfort-related performance metrics. To validate the proposed methodology, we extracted basic design rules of Pareto solutions using data mining techniques. We also verified the effectiveness and applicability by comparing the results with those obtained from a conventional deep learning-based design process.
Submitted: Oct 3, 2024