Paper ID: 2410.03122

RIPPLECOT: Amplifying Ripple Effect of Knowledge Editing in Language Models via Chain-of-Thought In-Context Learning

Zihao Zhao, Yuchen Yang, Yijiang Li, Yinzhi Cao

The ripple effect poses a significant challenge in knowledge editing for large language models. Namely, when a single fact is edited, the model struggles to accurately update the related facts in a sequence, which is evaluated by multi-hop questions linked to a chain of related facts. Recent strategies have moved away from traditional parameter updates to more flexible, less computation-intensive methods, proven to be more effective in addressing the ripple effect. In-context learning (ICL) editing uses a simple demonstration `Imagine that + new fact` to guide LLMs, but struggles with complex multi-hop questions as the new fact alone fails to specify the chain of facts involved in such scenarios. Besides, memory-based editing maintains additional storage for all edits and related facts, requiring continuous updates to stay effective. As a result of these design limitations, the challenge remains, with the highest accuracy being only 33.8% on the MQuAKE-cf benchmarks for Vicuna-7B. To address this, we propose RippleCOT, a novel ICL editing approach integrating Chain-of-Thought (COT) reasoning. RippleCOT structures demonstrations as `newfact, question, thought, answer`, incorporating a thought component to identify and decompose the multi-hop logic within questions. This approach effectively guides the model through complex multi-hop questions with chains of related facts. Comprehensive experiments demonstrate that RippleCOT significantly outperforms the state-of-the-art on the ripple effect, achieving accuracy gains ranging from 7.8% to 87.1%.

Submitted: Oct 4, 2024